
Modern Assembly Language Programming
with the

ARM processor
Chapter 12: Pulse Modulation



1 Introduction

2 Raspberry Pi PWM

3 pcDuino PWM



Pulse Modulation

The GPIO device can send a digital signal, but what if you need to send an analog
signal?

Send a stream of pulses to the device.

The device acts as a low-pass filter, which averages the digital pulses into an
analog voltage.

By varying the percentage of time that the pulses are high versus low, the
computer can control how much average energy is sent to the device.

The percentage of time that the pulses are high versus low is known as the duty
cycle.

Varying the duty cycle is referred to as modulation.



Types of Pulse Modulation

There are two major types of pulse modulation.

With Pulse Density Modulation (PDM), the pulses of energy are of constant
duration, and the time between them is modulated.

With Pulse Width Modulation (PWM), time between pulses is constant and the
length of time that the signal is high is modulated.



Pulse Frequency Modulation

Pulse: Received Signal:Modulation Signal:



Pulse Width Modulation

Pulse: Received Signal:Modulation Signal:



Programming Pulse Modulation

Most pulse modulation devices are configured in three steps as follows:

The base frequency of the clock that drives the PWM device is configured. This
step is usually optional.

The mode of operation for the pulse modulation device is configured by writing to
one or more configuration registers in the pulse modulation device.

The cycle time is set by writing a “range” value into a register in the pulse
modulation device. This value is usually set as a multiple of the base clock cycle
time.

Once the device is configured, the duty cycle can be changed easily by writing to one
or more registers in the pulse modulation device.



Raspberry Pi PWM Registers

Offset Name Description Size R/W

0016 PWMCTL PWM Control 32 R/W
0416 PWMSTA PWM FIFO Status 32 R/W
0816 PWMDMAC PWM DMA Configuration 32 R/W
1016 PWMRNG1 PWM Channel 1 Range 32 R/W
1416 PWMDAT1 PWM Channel 1 Data 32 R/W
1816 PWMFIF1 PWM FIFO Input 32 R/W
2016 PWMRNG2 PWM Channel 2 Range 32 R/W
2416 PWMDAT2 PWM Channel 2 Data 32 R/W



Programming the Raspberry Pi PWM Device

There are three modes of operation for the BCM2835 PWM device:

pulse density modulation mode,

pulse width modulation mode, and

serial transmission mode.



Control Register - PWM1

Bit Name Description Values

0 PWEN1 Channel 1 Enable 0: Channel is disabled
1: Channel is enabled

1 MODE1 Channel 1 Mode 0: PDM or PWM mode
1: Serial mode

2 RPTL1 Channel 1 Repeat Last 0: Transmission stops when FIFO empty
1: Last data is sent repeatedly

3 SBIT1 Channel 1 Silence Bit 0: Output goes low when not transmitting
1: Output goes high when not transmitting

4 POLA1 Channel 1 Polarity 0: 0 is low voltage and 1 is high voltage
1: 1 is low voltage and 0 is high voltage

5 USEF1 Channel 1 Use FIFO 0: Data register is used
1: FIFO is used

6 CLRF1 Channel 1 Clear FIFO 0: No effect
1: Causes FIFO to be emptied

7 MSEN1 Channel 1 PWM Enable 0: PDM mode
1: PWM mode



Control Register - PWM2

Bit Name Description Values

8 PWEN2 Channel 2 Enable 0: Channel is disabled
1: Channel is enabled

9 MODE2 Channel 2 Mode 0: PDM or PWM mode
1: Serial mode

10 RPTL2 Channel 2 Repeat Last 0: Transmission stops when FIFO empty
1: Last data is sent repeatedly

11 SBIT2 Channel 2 Silence Bit 0: Output goes low when not transmitting
1: Output goes high when not transmitting

12 POLA2 Channel 2 Polarity 0: 0 is low voltage and 1 is high voltage
1: 1 is low voltage and 0 is high voltage

13 USEF2 Channel 2 Use FIFO 0: Data register is used
1: FIFO is used

14 Unused Reserved

15 MSEN2 Channel 2 PWM Enable 0: PDM mode
1: PWM mode

16-31 Unused Reserved



Initialization on the Raspberry Pi

For a base frequency of 100 KHz, the steps would be as follows:

1 Verify that the clock manager device is configured to send a 100 MHz clock to the
pulse modulator device through PWM_CLK.

2 Store 1000 in the PWMRNG1 register to divide PWM_CLK by 1000.

3 Initialize the duty cycle to 0%by writing zero to the PWMDAT1 register.
4 Enable PWM channel 1 to operate in PWM mode by writing to PWMCTL:

set bit zero to 1,

bit one to 0,

set bit five to 0, and

set bit seven of to 1.

Once this initialization is performed, we can set or change the duty cycle at any time
by writing a value between 0 and 1000 to the PWMDAT1 register.



pcDuino PWM register map.

Offset Name Description

20016 PWMCTL PWM Control
20416 PWM_CH0_PERIOD PWM Channel 0 Period
20816 PWM_CH1_PERIOD PWM Channel 1 Period



pcDuino PWM Control Register - Channel 0

Bit Name Description Values

3-0 CH0_PRESCAL Channel 0 Prescale These bits must be set before the clock is en-
abled.

4 CH0_EN Channel 0 Enable 0: Channel disabled
1: Channel enabled

5 CH0_ACT_STA Channel 0 Polarity 0: Channel is active low
1: Channel is active high

6 SCLK_CH0_GATING Channel 0 Clock 0: Clock disabled
1: Clock enabled

7 CH0_PUL_START Start pulse
If the PWM device is configured for pulse mode,
writing a 1 to this bit causes the PWM device to
emit a single pulse.

8 PWM0_BYPASS Bypass PWM 0: Output PWM device signal
1: Output base clock

9 SCLK_CH0_MODE Select Mode 0: PWM mode
1: Pulse mode

10-14 Not Used



pcDuino PWM Control Register - Channel 1

Bit Name Description Values

18-15 CH1_PRESCAL Channel 1 Prescale These bits must be set before the clock is en-
abled.

19 CH1_EN Channel 1 Enable 0: Channel disabled
1: Channel enabled

20 CH1_ACT_STA Channel 1 Polarity 0: Channel is active low
1: Channel is active high

21 SCLK_CH1_GATING Channel 1 Clock 0: Clock disabled
1: Clock enabled

22 CH1_PUL_START Start pulse
If the PWM device is configured for pulse mode,
writing a 1 to this bit causes the PWM device to
emit a single pulse.

23 PWM1_BYPASS Bypass PWM 0: Output PWM device signal
1: Output base clock

24 SCLK_CH1_MODE Select Mode 0: PWM mode
1: Pulse mode

31-25 Not Used



Period and Duty Cycle

The two period registers are each organized as two 16-bit numbers:

The upper 16 bits control the total number of clock cycles in one period.

The lower 16 bits of the channel period register control the duty cycle.



Setting Base Frequency

The PWM frequency is calculated as

f =
OSC24M

PSC
N+1

,

where OSC24M is the frequency of the base clock (the default is 24MHz), PSC is the
prescale value set in the channel prescale bits in the PWM control register, and N is
the value stored in the upper 16 bits of the channel period register.



Setting Duty Cycle

The lower 16 bits of the channel period register control the duty cycle. The duty cycle
(expressed as % of full on) can be calculated as

d= D
N

×100,

where D is the value stored in the lower 16 bits of the channel period register.
Note: the condition D≤N must always remain true. If the programmer allows D to
become greater than N, the results are unpredictable.



Configuring pcDunio PWM

1 Disable the desired channel:
1 Read the PWM control register into x.

2 Clear all of the bits in x for the desired PWM channel.

3 Write x back to the PWM control register

2 Initialize the period register for the desired channel.
1 Calculate the desired value for N.

2 Let D= 0.

3 Let y=N×216 +D

4 Write y to the desired channel period register.

3 Set the prescaler.
1 Select the four-bit code for the desired divisor from the table in the textbook.

2 Set the prescaler code bits in x.

3 Write x back to the PWM control register

4 Enable the PWM device.
1 Set the appropriate bits in x to enable the desired channel, select the polarity, and

enable the clock.

2 Write x to the PWM control register.



Chapter Summary

Pulse modulation is

a group of methods for generating analog signals using digital equipment.

commonly used in control systems to regulate the power sent to motors and other
devices.

The cycle frequency must be programmed to match the application.

It can take some experimentation to find the best frequency for any given application.


	Introduction
	Raspberry Pi PWM
	pcDuino PWM

